ÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐÐÉñ¾ÍøÂ翪·¢µÄÉèÖÃÒªÁì
ÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾ÍøÂ翪·¢µÄÉèÖÃÒªÁì
Ëæ×ÅÈ˹¤ÖÇÄܺÍÉî¶ÈѧϰµÄ¿ìËÙÉú³¤£¬Éñ¾ÍøÂç³ÉΪÁËÒ»¸öÈÈÃŵÄÑо¿ÁìÓò¡£PyCharm×÷Ϊһ¿îÇ¿Ê¢µÄPython¼¯³É¿ª·¢ÇéÐΣ¬¿ÉÒÔΪÉñ¾ÍøÂ翪·¢Ìṩ±ã½Ý¶ø¸ßЧµÄ¹¤¾ßºÍ¹¦Ð§¡£±¾ÎĽ«ÏÈÈÝÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾ÍøÂ翪·¢µÄÉèÖÃÒªÁ죬²¢Ìṩ´úÂëʾÀý¡£
°ì·¨1£º×°ÖÃPyCharm
Ê×ÏÈ£¬ÎÒÃÇÐèÒªÏÂÔغÍ×°ÖÃPyCharm¡£Äú¿ÉÒÔÔÚJetBrainsµÄ¹Ù·½ÍøÕ¾ÉÏÕÒµ½PyCharmµÄ×îа汾¡£Ñ¡ÔñÊÊÓÃÓÚLinuxϵͳµÄ°æ±¾£¬²¢Æ¾Ö¤¹Ù·½µÄ×°ÖÃÖ¸ÄϾÙÐÐ×°Öá£×°ÖÃÍê³Éºó£¬Æô¶¯PyCharm¡£
°ì·¨2£º½¨ÉèPythonÐéÄâÇéÐÎ
ÔÚ¾ÙÐÐÉñ¾ÍøÂ翪·¢Ö®Ç°£¬ÎÒÃÇÐèÒª½¨ÉèÒ»¸öPythonÐéÄâÇéÐΡ£ÐéÄâÇéÐÎʹµÃÿ¸öÏîÄ¿¶¼ÓÐ×ÔÁ¦µÄPythonÚ¹ÊÍÆ÷ºÍ¿â£¬×èÖ¹Á˲î±ðÏîÄ¿Ö®¼äµÄ³åÍ»¡£ÔÚÖÕ¶ËÖÐÔËÐÐÒÔÏÂÏÂÁÉè²¢¼¤»îÐéÄâÇéÐΣº
python3 -m venv myenv source myenv/bin/activate
µÇ¼ºó¸´ÖÆ
°ì·¨3£º×°ÖÃËùÐèµÄPython¿â
Éñ¾ÍøÂ翪·¢Í¨³£ÐèҪʹÓÃһЩµÚÈý·½Python¿â£¬ÈçTensorFlow¡¢KerasºÍPyTorchµÈ¡£ÔÚ¼¤»îµÄÐéÄâÇéÐÎÖУ¬Ê¹ÓÃpipÏÂÁîÀ´×°ÖÃÕâЩ¿â¡£Ê¾Àý´úÂëÈçÏ£º
pip install tensorflow pip install keras pip install torch
µÇ¼ºó¸´ÖÆ
°ì·¨4£º½¨É蹤³Ì
ÔÚPyCharmµÄ½çÃæÖУ¬µã»÷”Create New Project”À´½¨ÉèÒ»¸öÐµĹ¤³Ì¡£Ñ¡ÔñÒ»¸öºÏÊʵÄĿ¼£¬²¢ÉèÖÃÚ¹ÊÍÆ÷ΪÐéÄâÇéÐÎÖеÄPythonÚ¹ÊÍÆ÷¡£
°ì·¨5£º±àд´úÂë
ÔÚ¹¤³ÌÖн¨ÉèÒ»¸öPythonÎļþ£¬ÀýÈç”neural_network.py”¡£ÔÚ¸ÃÎļþÖУ¬ÎÒÃǽ«±àдÉñ¾ÍøÂçµÄ´úÂë¡£ÒÔÏÂÊÇÒ»¸ö¼òÆÓµÄÉñ¾ÍøÂçµÄ´úÂëʾÀý£º
import tensorflow as tf from tensorflow import keras import numpy as np # ¼ÓÔØÊý¾Ý¼¯ mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # ¹éÒ»»¯ train_images = train_images / 255.0 test_images = test_images / 255.0 # ¹¹½¨Ä£×Ó model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) # ±àÒëÄ£×Ó model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # ѵÁ·Ä£×Ó model.fit(train_images, train_labels, epochs=10) # ÆÀ¹ÀÄ£×Ó test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)
µÇ¼ºó¸´ÖÆ
°ì·¨6£ºÔËÐдúÂë
ÔÚPyCharmµÄ½çÃæÖУ¬ÓÒ¼üµã»÷´úÂëÎļþ£¬²¢Ñ¡Ôñ”Run”À´ÔËÐдúÂë¡£PyCharm½«»áŲÓÃÐéÄâÇéÐÎÖеÄPythonÚ¹ÊÍÆ÷À´Ö´ÐдúÂë¡£Äú¿ÉÒÔÔÚ¿ØÖÆ̨ÖÐÉó²é´úÂëµÄÊä³öЧ¹û¡£
×ܽ᣺
±¾ÎÄÏÈÈÝÁËÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾ÍøÂ翪·¢µÄÉèÖÃÒªÁ졣ͨ¹ýƾ֤ÒÔÉÏ°ì·¨¾ÙÐвÙ×÷£¬Äú¿ÉÒÔÔÚPyCharmÖÐÇáËÉ¿ª·¢ºÍµ÷ÊÔÉñ¾ÍøÂç´úÂë¡£ËäÈ»£¬ÕâÖ»ÊÇÒ»¸ö¼òÆÓµÄʾÀý£¬Äú¿ÉÒÔƾ֤×Ô¼ºµÄÐèÇóÀ´±àдԽ·¢ÖØ´óµÄÉñ¾ÍøÂç´úÂë¡£×£ÄúÔÚÉñ¾ÍøÂçÑо¿ºÍ¿ª·¢ÖÐÈ¡µÃºÃЧ¹û£¡
ÒÔÉϾÍÊÇÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐÐÉñ¾ÍøÂ翪·¢µÄÉèÖÃÒªÁìµÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡