Å£¶Ùµü´ú¹«Ê½×÷Óà ţ¶Ùµü´ú¹«Ê½×÷ÓúÍÒâÒåÊÇʲô
Å£¶Ùµü´ú·¨ÊÇÒ»ÖÖ¸ßЧµÄÊýÖµÒªÁ죬ÓÃÓÚÇó½â·ÇÏßÐÔ·½³Ì¸ù¡£ËüʹÓÃÌ©ÀÕÕö¿ªÊ½¹¹½¨¾Ö²¿ÏßÐÔ½üËÆÖµÀ´ÆȽü¸ù£¬Ã¿´Îµü´ú¶¼»á±¬·¢¸ü¿¿½üÏÖʵ¸ùµÄнüËÆÖµ¡£Å£¶Ùµü´ú·¨¾ßÓпìËÙÊÕÁ²¡¢ÎȹÌÐԸߵÈÓŵ㣬ÆÕ±éÓ¦ÓÃÓÚ¿Æѧ¡¢¹¤³ÌºÍ½ðÈÚµÈÁìÓò¡£
Å£¶Ùµü´ú·¨µÄ×÷ÓÃ
Å£¶Ùµü´ú·¨ÊÇÒ»ÖÖÇó½â·ÇÏßÐÔ·½³Ì¸ùµÄ¸ßЧÊýÖµÒªÁì¡£
ÔÀí£º
Å£¶Ùµü´ú·¨»ùÓÚÌ©ÀÕÕö¿ªÊ½£¬Ê¹ÓÃÒ»¸ö·½³ÌµÄ¾Ö²¿ÏßÐÔ½üËÆÖµÀ´ÆȽüËüµÄ¸ù¡£ÏêϸÀ´Ëµ£¬¹ØÓÚÒ»¸ö·ÇÏßÐÔ·½³Ì f(x) = 0£¬ÔÚ³õʼֵ x0 ÖÜΧµÄÌ©ÀÕÕö¿ªÊ½Îª£º
f(x) ¡Ö f(x0) + f'(x0)(x - x0)
µÇ¼ºó¸´ÖÆ
Áî f(x) = 0£¬¿ÉµÃ£º
x ¡Ö x0 - f(x0) / f'(x0)
µÇ¼ºó¸´ÖÆ
×÷Óãº
Å£¶Ùµü´ú·¨Ê¹ÓÃÕâ¸öÏßÐÔ½üËÆÖµÀ´ÅÌËãеĽüËÆÖµ x1£¬x1 ÔÙÓÃÓÚÅÌËã x2£¬ÒÔ´ËÀàÍÆ£¬Ö±ÖÁÖª×ãÒ»¶¨µÄ¾«¶ÈÒªÇó¡£Ã¿´Îµü´úºó£¬Ð½üËÆÖµ¶¼»á¸ü¿¿½ü·½³ÌµÄÏÖʵ¸ù¡£
ÒâÒ壺
Å£¶Ùµü´ú·¨¾ßÓÐÒÔÏÂÖ÷ÒªÒâÒ壺
- ¿ìËÙÊÕÁ²£º¹ØÓÚÐí¶à·ÇÏßÐÔ·½³Ì£¬Å£¶Ùµü´ú·¨µÄÊÕÁ²ËÙÂʷdz£¿ì£¬Í¨³£ÊǶþ´ÎÊÕÁ²¡£
- ÎȹÌÐÔ£ºÔÚijЩÌõ¼þÏ£¬Å£¶Ùµü´ú·¨¿ÉÒÔ°ü¹ÜÊÕÁ²µ½¸ù¡£
- ÁÉÀ«µÄÓ¦ÓãºÅ£¶Ùµü´ú·¨ÆÕ±éÓ¦ÓÃÓÚ¿Æѧ¡¢¹¤³ÌºÍ½ðÈڵȸ÷¸öÁìÓò£¬ÀýÈçÇó½â¶àÏîʽ¸ù¡¢ÓÅ»¯ÎÊÌâºÍÊýÖµ»ý·Ö¡£
ʾÀý£º
˼Á¿·½³Ì x^2 – 2 = 0¡£Ê¹ÓÃÅ£¶Ùµü´ú·¨Çó½âÈçÏ£º
- ³õʼֵ x0 = 1
- x1 = x0 – f(x0) / f'(x0) = 1 – (1^2 – 2) / 2*1 = 1.5
- x2 = x1 – f(x1) / f'(x1) = 1.5 – (1.5^2 – 2) / 2*1.5 = 1.4167
- …
¼ÌÐøµü´ú£¬ÎÒÃǽ«»ñµÃ¸ü¿¿½ü¸ù ¡Ì2 µÄ½üËÆÖµ¡£
ÒÔÉϾÍÊÇÅ£¶Ùµü´ú¹«Ê½×÷Óà ţ¶Ùµü´ú¹«Ê½×÷ÓúÍÒâÒåÊÇʲôµÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡